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 Characterization of hydroxyapatite by time-resolved 
luminescence and FTIR spectroscopy  

L.Grigorjeva, D.Millers, K.Smits, Dz.Jankovica, L.Pukina  

Institute of solid State Physics, University of Latvia, 

L.Grigorjeva:lgrig@latnet.lv 

Abstract.  Time-resolved luminescence and FTIR absorption spectra of undoped and Eu 
and Ce doped hydroxyapatite nanocrystalline powders prepared by sol-gel method were 
studied. The luminescence band at 350-400 nm was detected and two decay times (11 ns 
and 38 ns) was determinated for Ce doped samples. The luminescence spectra and decay 
kinetics were analized for Eu doped nanopowders. The Eu3+ ion was incorporated in 
different Ca sites. The process of energy transfer to Eu3+ excited state (5D0) was detected 
from luminescence decay kinetics. 

 

1.  Introduction  
Hydroxiapatite Ca10(PO4)6(OH)2 (HAp)  is a biomedical material – component of bone and 

teeth. During recent years HAp studies became topical in view of material non-toxicity, 
biocompatibility, important for different clinical and biological applications (drug delivery, 
implants, in vivo imaging etc.) [1]. The HAp doped with rare earth (RE) ions is fluorescent materials 
prospective for lightening [2]. The HAp can be synthesized a nanopowder by sol-gel, hydrothermal 
and others methods [3.4]. The luminescence properties of HAp were studied in limited number of 
papers and mostly contain the Eu3+ luminescence studies [1,3, 5].  The time-resolved luminescence is 
described in limited number of papers. 

 The HAp has hexagonal structure, space group Р63/m [6] and two non equivalent Ca2+ positions 
are – Ca(I) and  Ca(II). Therefore the rare earth (RE) ions substitute for Ca2+  in HAp structure in two 
non-equal local positions and the RE ions luminescence was used as a local structure probe. 

In this paper we will present the results of synthesis of undoped as well as doped with Eu and Ce 
HAp nanocrystalline powders. The XRD and FTIR studies were carried out for the controlling the 
structure and vibration spectra of prepared HAp. The luminescence properties - spectra and decay 
kinetics of HAp nanopowders were measured and analyzed. 

2.  Experimental 
FTIR absorption spectra were recorded using spectrometer Bruker EQUINOX55 with KBr pellet 
method. The crystalline phases were identified by X-ray difractometer (Bruker AXS D8 Advance). 
The luminescence spectra and decay kinetics were measured under YAG:Nd laser (266 nm, 2 ns) 
excitation.The luminescence was recorded through monohromator with a phonon counting head 
(HAMAMATSU H8259) and photon counting board  FastComTech module P 7887 with 500 channels 
and minimal time bins 250 ps. The radioluminescence was excited by X-rays (30 kV, 10 mA) through 
a Be window; the monochromator SHAMROC303 coupled with CCD camera ANDOR iDUS 
DU401A-BV was used for the spectra registration. All experiments were carried out at 300K. 
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3. Results and discussion 

3.1.1. Sample synthesis.  
The sol-gel (co-precipitation) method was used for undoped and doped with Eu or Ce HAp 
nanocrystals synthesis. The synthesis was carried out by using the sheme similar to described in [7]. 
The starting materials was [(NH4)2HPO4], (CaNO3)2·4H2O and RE nitrates. The concentration of RE 
was calculated in at.%. During the reaction the NH4OH was used to keep constant pH=10. After the 
reaction and washing in deionised water the powders were dried at 80 oC 72 h. All samples were 
prepared under the same conditions. 

 
3.1.2. XRD difraction.  
The XRD was measured to clear up the crystallinity of synthesized powders. Fig.1. shows the XRD 
patterns of undoped HAp, Ce and Eu doped HAp. The XRD pattern shows only HAp with well-
crystallized hexagonal structure (JCPDS Nr.09-0432) and other phases were not found. The grain sizes 
calculated from XRD patern by Debay-Scherr’s formula was 20-25nm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.1.3.FTIR 
The FTIR absorption spectra of the obtained HAp nanopowders (Fig.2) show the absorption peaks 

concerned with stretching (ν) and bending modes (δ) of the hydroxyl, PO4
3- and carbonate groups 

[4,8]. The narrow peak at 3570 cm-1 (O-H stretching mode for hydroxil group in regular HAp sites) 
confirms the synthesis HAp structure [9]. Along with PO4

3- group vibration bands the traces of 
carbonate group bands [10] were identified (Fig.2). 

 
3.1.4.Luminescence 
In prepared undoped HAp sample the wide luminescence band peaking at 420 nm was detected at 

300K. The time-resolved eksperiments showed that band consist of two peaks with different decay 
times (~6.5 ns and ~8.7 ns). The band must be due to two non-equal PO4

3- groups. 
In Ce doped samples the luminescence band at 350-400 nm was detected and two decay times (11 

ns and 38 ns) was determinated (Fig.3). The decay time 38 ns are close to that observed for Ce3+ 
luminescence in other materials [11]. The two close bands are due to Ce ion ground state splitting to 
5F5/2 and 2F7/2 (splitting 1800 cm-1).  
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Fig.1. XRD pattern of undoped Hap (a) and 
doped with 3 at. % Eu and 5 at.% Ce (b) 
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Fig.3. Luminescence spectrum (a) and luminiscence decay kinetic for HAp:Ce nanopowder. 

 
 The red luminescence of HAp: Eu is evidence of incorporation of Eu3+. The spectra were recorded 

under 266 nm laser excitation and under X-ray excitation. The peak positions and the ratio of peak 
intensities are the same showing that both excitations band-to-band and charge transfer are efficient 
for Eu doped HAp. The luminescence spectra and luminescence decay kinetic of HAp:Eu nanopowder 
are presented in Fig.4. The band at 592 nm is characteristic of luminescence center with inversion 
center (magnetic dipole transition). The band at 619 nm is most intense and it is due to the Eu3+ center 
without inversion symmetry (electrical dipole). Hence the Eu3+ ion incorporates in two different sites 
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Fig.2.FTIR spectra of HAp nanopowders 

Table 1. FTIR absorption peak positions and types of bonds of prepared HAP  

Peak 
position, 
cm‐1 

3570  3438 
3151 
3032 
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1346 
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472 
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in prepared HAp nanopowders. In [5] two sites C3 and Cs was discussed for the Eu3+ incorporation in 
HAp. 

The decay kinetics at 579 nm, 592 nm and 700 nm are close (~1.1 ms at 300K) (Fig.4b). The decay 
time of 619 nm band is ~540 µs that shows the different site symmetries of incorporatyed Eu3+ ions. 

The rising front of the luminescence kinetics was detected for 592 nm, 619 nm and 700 nm bands. 
This behavior is related to energy transfer process during the excited state (5D0) formation. 

 
 
 

 
 

 
 
 
 
 
 
 
 
Fig.4. Luminescence spectra (a) and decay kinetics (b) of HAp:Eu nanopowders. 
 

4.  Conclusions 
The analysis of XRD and FTIR absorption confirm the synthesis hexagonal HAp structure and the 
vibration spectrum did not showed traces of additiomal molecular impurities. The luminescence band 
peaking at 420 nm in undoped HAp nanopowders consist of two sub-bands with decay times τ1 ~ 6.5 
ns and τ2~8.7 ns.  We suggest that this luminescence is due to two different PO4 groups in HAp 
structure. The Eu3+ luminescence spectra and decay kinetics were analyzed.  It is shown that the 
mechanism of exited state (5D0) formation is complicate and includes the energy transfer process.  The 
Eu3+ incorporates in Ca(I) position with C3 site  symmetry and in Ca(II) position with Cs symmetry. 
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