Unexpected Epitaxial Growth of a Few WS2 Layers on 1100 Facets of ZnO Nanowires

Boris Polyakov, Alexei Kuzmin, Krisjanis Smits, Janis Zideluns, Edgars Butanovs,
Jelena Butikova, Sergei Vlassov, Sergei Piskunov, and Yuri F. Zhukovskii


Core-shell nanowires is an interesting and perspective class of radially heterostructured nanomaterials where epitaxial growth of the shell can be realized even at signi ficant core-shell lattice mismatch. In this study epitaxial hexagonally-shaped shell consisting of WS2 nanolayers was grown on f1100g facets of prismatic wurtzite-structured
[0001]-oriented ZnO nanowires for the first time. A synthesis was performed by annealing in a sulfur atmosphere of ZnO/WO3 core-shell structures, produced by reactive
DC magnetron sputtering of amorphous a-WO3 layer on top of ZnO nanowire array.
The morphology and phase composition of synthesized ZnO/WS2 core-shell nanowires were con firmed by scanning and transmission electron microscopy (SEM and TEM),micro-Raman and photoluminescence spectroscopy. Epitaxial growth of WS2(0001) layer(s) on f1100g facets of ZnO nanowire is unexpected due to incompatibility of their symmetry and structure parameters. To relax the interfacial incoherence, we propose a model of ZnO/WS2 interface containing WS2 bridging groups inside and use first-principles simulations to support its feasibility.

J. Phys. Chem. C

DOI: 10.1021/acs.jpcc.6b06139

pdf-icon Download PDF