The role of Nb in intensity increase of Er ion upconversion luminescence in zirconia

K. Smits, A. Sarakovskis, L. Grigorjeva, D. Millers, and J. Grabis

It is found that Nb co-doping increases the luminescence and upconversion luminescence intensity
in rare earth doped zirconia. Er and Yb-doped nanocrystalline samples with or without Nb
co-doping were prepared by sol-gel method and thermally annealed to check for the impact of
phase transition on luminescence properties. Phase composition and grain sizes were examined by
X-ray diffraction; the morphology was checked by scanning- and high-resolution transmission
electron microscopes. Both steady-state and time-resolved luminescence were studied. Comparison
of samples with different oxygen vacancy concentrations and different Nb concentrations
confirmed the known assumption that oxygen vacancies are the main agents for tetragonal or cubic
phase stabilization. The oxygen vacancies quench the upconversion luminescence; however, they
also prevent agglomeration of rare-earth ions and/or displacement of rare-earth ions to grain
surfaces. It is found that co-doping with Nb ions significantly (>20 times) increases upconversion
luminescence intensity. Hence, ZrO2:Er:Yb:Nb nanocrystals may show promise for upconversion

Journal of Applied Physics 115, 213520 (2014)


pdf-iconDownload PDF