V. Babin , P. Bohacek , L. Grigorjeva , M. Kucera , M. Nikl , S. Zazubovich , A. Zolotarjovs
Photo- and radioluminescence and thermally stimulated luminescence characteristics of Ce3+ – doped
and Ce3+, Mg2+ co-doped Gd3(Ga,Al)5O12 (GAGG) single crystals of similar composition are investigated in the 9-500 K temperature range. The Ce3+ – related luminescence spectra and the photoluminescence decay kinetics in these crystals are found to be similar. Under photoexcitation in the Ce3+ – and Gd3+ – related absorption bands, no prominent rise of the photoluminescence intensity in time is observed neither in GAGG:Ce,Mg nor in GAGG:Ce crystals. The afterglow is strongly reduced in GAGG:Ce,Mg as compared to GAGG:Ce, and the afterglow decay kinetics is much faster. Co-doping with Mg2+ results in a drastic decrease of the thermally stimulated luminescence (TSL) intensity in the whole investigated temperature range and in the appearance of a new complex Mg2+ – related TSL glow curve peak around 285 K. After irradiation in the Ce3+ – related 3.6 eV absorption band, the TSL intensity in GAGG:Ce,Mg is found to be comparable with that in the GAGG:Ce epitaxial film of similar composition. The Mg2+ – induced changes in the concentration, origin and structure of the crystal lattice defects and their influence on the scintillation characteristics of GAGG:Ce,Mg are discussed.
Optical Materials 66 (2017) 48-58
DOI: 10.1016/j.optmat.2017.01.039