A.N.Trukhin , K.Smits , J.Jansons , D.Berzins , G.Chikvaidze , D.L.Griscom
Luminescence of phosphorus doped crystalline α-quartz and phosphosilicate glass with content
3P2O5 7SiO2 was studied.Water and OH groups are found by IR spectra in these materials.The spectrum of lumines cence contains many bands in the range 1.5–5.5 eV. The luminescence bands in UV range at 4.5–5 eV are similar in those materials. Decay duration in exponential approximation manifests a time constant about 37 ns. Also a component in ms range was detected. PL band of ms component is shifted to low energy withrespect to that of 37 ns component. This shift is about 0.6 eV. It is explained as singlet–triplet splitting of excited state. Below 14 K increase of luminescence kinetics duration in ms range was observed and it was ascribed to zero magnetic field splitting of triplet excited state of the center.
Yellow–red luminescence was induced by irradiation in phosphorus doped crystalline α-quartz,
phosphosilicate glasses.The yellow luminescence contains two bands a t600 and 740 nm. Their decay is similar under 193 nm laser and maybe fitted with the first order fractal kinetics or stretched exponent.
Thermally stimulated luminescence contains only band at 600 nm. The 248 nm laser excites luminescence at 740 nm according to intracenter process with decay time constant about 4ms at 9 K.
Both type of luminescence UV and yellow were ascribed to different defects containing phosphorus.
P-doped α-quartz sample heated a t550 °C become opalescent. IR spectra related to water and OH
groups are changed. Photoluminescence intensity of all three bands,UV (250nm), yellow (600nm) and
red (740nm) strongly diminished and disappeared after heating to 660 °C. Radiation induced red
luminescence of non-bridging oxygen luminescence center (NBO) appeared in crystal after heat treatment. We had observed a crystalline version of this center (Skujaetal., Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms. 2012; 286: pp.159–168).
Effect of heat treatment explained as sedimentation of phosphorus in some state. Keeping of treated
sample at 450–500 °C leads to partial revival of ability to create yellow luminescence center under irradiation.
Journal of Luminescence 166(2015)346–355
doi:10.1016/j.jlumin.2015.05.045