Jelena Papan , Dragana J. Jovanovic , Katarina Vukovic , Krisjanis Smits ,
Vesna ÐorCevic , Miroslav Dramicanin
The detailed analyses of structure and luminescence of europium(III)-doped A2Hf2O7 (A ¼ Y, Gd, Lu)
nanoparticles is presented. Samples were prepared by time and cost effective combustion method that
utilize polyethylene glycol both as a chelating agent and as a fuel, with different europium(III) concentrations
(from 1 to 12 at.%), annealed at temperatures ranging from 800 to 1400 C, and with alternating
A3þ cation in the A2Hf2O7 host. Then, structural variations between materials were analysed by Xray
diffraction and structural refinement, while the changes in the luminescence were assessed from the
Judd-Ofelt analyses of emission spectra. Nanoparticles prepared at the lowest temperature (800 C) had
the smallest particle size of ~6 nm and showed the highest quantum efficiency when doped with 1 and
2 at.% of europium(III). Radiative transition rate and quantum efficiency of emission showed
Lu2Hf2O7 > Gd2Hf2O7 > Y2Hf2O7 trend.
Optical Materials xxx (2016) 1e9
doi:10.1016/j.optmat.2016.04.007