Luminescence and Raman Detection of Molecular Cl2 and ClClO Molecules in Amorphous SiO2 Matrix

Abstract Image

Chlorine is a common undesirable impurity in synthetic SiO2 glass for ultraviolet optics and optical fibers. It is usually incorporated into glass as bound Si–Cl groups or interstitial Cl2molecules. We report a high-sensitivity detection of Cl2 in amorphous SiO2 (a-SiO2) by photoluminescence (PL) and also by Raman spectroscopy. The Cl2 PL emission band at 1.22 eV (1016 nm) appears at T < 160 K and shows a characteristic vibronic progression with separations ≈(520–540) cm–1 and an average lifetime of ≈5 ms at 13 K. Its excitation spectrum coincides with the shape of the 3.78 eV (328 nm) optical absorption band of Cl2 in a-SiO2, corresponding to the X → A 1Πu transition to repulsive excited state. Direct X → a singlet-to-triplet excitation was also observed at 2.33 eV (532 nm). Cl2 PL may serve as a sensitive and selective tool for monitoring Cl impurities and their reactions in a-SiO2. A Raman band of Cl2 is found at 546 cm–1. Cl2 photodissociation at energies up to 4.66 eV (266 nm) was not detected, pointing to a strong cage effect in a-SiO2 matrix. However, 7.9 eV (157 nm) photolysis of interstitial O2molecules gives rise to a Raman band at 954 cm–1, indicating a formation of dichlorine monoxide isomer, ClClO molecule by reaction of O atoms with interstitial Cl2.

J. Phys. Chem. C, 2017, 121 (9), pp 5261–5266

pdf-icon Download PDF