Effect of Point Defects on Luminescence Characteristics of ZnO Ceramics

P. A. Rodnyi, K. A. Chernenko, A. Zolotarjovs, L. Grigorjeva,
E. I. Gorokhova, and I. D. Venevtsev

Abstract—Photo- and thermally stimulated luminescence of ZnO ceramics are produced by uniaxial hot pressing. The luminescence spectra of ceramics contain a wide band with a maximum at 500 nm, for which oxygen vacancies VO are responsible, and a narrow band with a maximum at 385 nm, which is of exciton nature. It follows from luminescence excitation spectra that the exciton energy is transferred to luminescence centers in ZnO. An analysis of the thermally stimulated luminescence curves allowed detection of a set of discrete levels of point defects with activation energies of 25, 45, 510, 590 meV, and defects with continuous energy distributions in the range of 50–100 meV. The parameters of some of the detected defects are characteristic of a lithium impurity and hydrogen centers. The photoluminescence kinetics are studied in a wide temperature range.
DOI: 10.1134/S1063783416100309

ISSN 1063-7834,

Physics of the Solid State, 2016, Vol. 58, No. 10, pp. 2055–2061.

pdf-icon Download PDF