Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations

Sergei Vlassov, Boris Polyakov, Sven Oras, Mikk Vahtrus,
Mikk Antsov, Andris Šutka Krisjanis Smits, Leonid M Dorogin and
Rünno Lõhmus

In the present work, we demonstrate a novel approach to nanotribological measurements based
on the bending manipulation of hexagonal ZnO nanowires (NWs) in an adjustable halfsuspended
configuration inside a scanning electron microscope. A pick-and-place manipulation
technique was used to control the length of the adhered part of each suspended NW. Static and
kinetic friction were found by a ‘self-sensing’ approach based on the strain profile of the
elastically bent NW during manipulation and its Young’s modulus, which was separately
measured in a three-point bending test with an atomic force microscope. The calculation of static
friction from the most bent state was completely reconsidered and a novel more realistic crackbased
model was proposed. It was demonstrated that, in contrast to assumptions made in
previously published models, interfacial stresses in statically bent NW are highly localized and
interfacial strength is comparable to the bending strength of NW measured in respective bending

Nanotechnology 27 (2016) 335701 (10pp)


pdf-iconDownload PDF